Evaluation of the effect of oral anticoagulants on all-cause mortality within 3 months of the diagnosis of atrial fibrillation: results from the GARFIELD-AF registry

Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK, 1Duke University, Durham, NC, USA, 2St. George’s University of London and Imperial College, London, UK, 3Thrombosis Research Institute, London, UK, 4University of Boulogne, Boulogne, France, 5University of Würzburg Medical School, UK, 6Mayo Clinic Rochester, MN, USA, 7Kagoshima Women’s Hospital and Frontier Medical School, Beckenham, UK, USA, 8Takai University, Itami, Japan, 9Formerly Department of Medicine, Technical University of Munich, Munich, Germany, 10Mayo HealthCare Pharmaceuticals, Berlin, Germany, 11McMaster University, Hamilton, Canada, 12Oost-Limburg Vrije Gezondheid (OVG), Amsterdam, The Netherlands, 13University College London, London, UK,

BACKGROUND

- Real-world clinical evidence, generated from high-quality prospective observational studies, has an important role in establishing the value of new therapies, compared with standard of care, in everyday clinical practice.
- The largest multinational prospective registry, the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF), captures the diversity of treatment and outcomes in populations beyond the constraints of randomised clinical trials.
- When comparing the benefits and harms of treatments delivered in everyday practice, we need to account for differences in the distribution of baseline characteristics between treatment groups. Statistical methods must be used to minimize the effects of confounding in order to obtain an unbiased estimate of the treatment effect.

PURPOSE

- Using data from the largest multinational prospective registry in atrial fibrillation (GARFIELD-AF), we examined whether treatment effects of oral anticoagulants (OAC) on all-cause mortality, stroke/systemic embolus and major bleeding are manifest within 3 months of diagnosis of AF in patients with a CHA2DS2-VASc score ≥ 2 (including gender).
- Safety and effectiveness analyses were conducted for the following comparisons:
 - OAC vs. no OAC
 - Non-vitamin K antagonist oral anticoagulants (NOACs) vs. Vitamin K antagonists (VKAs)

METHODS

- Patients, who were enrolled into GARFIELD-AF between Apr-2013 and Aug-2016 (cohorts 3-5), with a new diagnosis of AF, were included in the analysis (Figure 1). Over this time period, NOACs were available in most countries.
- We used a propensity weighting scheme, recently proposed by Li and colleagues, to evaluate the adjusted associations between drug use (as baseline) and all-cause mortality within 3 months from the start of treatment.
- This new method overlaps weights and optimises the efficiency of comparisons by defining the population with the most overlap in the covariates between treatment groups.
- Covariates considered for the model included: cohort, care setting location and specialty at diagnosis, demographics (age, sex, race, country), medical history (type of AF, diabetes, stroke, transient ischaemic attack, bleeding, hypertension, coronary, CABG, smoking, alcohol consumption, systemic embolus, vascular disease, chronic kidney disease, acute coronary syndromes, carotid occlusive disease, dementia, heart failure, hypothyroidism, hyperthyroidism, baseline ambulatory use), and presentation features (heart rate, systolic blood pressure, diastolic blood pressure, body mass index).
- Weights were then applied to Cox proportional hazards models to estimate the effects of each comparison on the endpoint.

RESULTS

- The study population comprised 19,134 anticoagulated patients (10,234 [NOACs]; 8,900 [VKAs]) and 7,608 patients without OAC (of the latter, 63.3% received aspirin-platelet antiplatelets).
- In total, 423 patients died within 3 months of diagnosis of AF (Kaplan-Meier survival rate of 98.4% at 3 months).
- The causes of death were: cardiovascular (n: 40.4% of cases), non-cardiovascular (36.4%) and unexplained (21.7%).
- Congestive heart failure (15.8%), cancer (8.3%), respiratory failure (5.7%), and infection (3.7%) were the most common known causes of death. These were followed by varices (5.4%), myocardial infarction (5.0%), non-haemorrhagic stroke (3.0%), and sudden death (5.0%).
- After weighting, standardised differences showed a balance between the 31 baseline variables and drug use.
- Weighted hazard ratios (HR) for all-cause mortality were:
 - 0.54 (95% CI, 0.43–0.68); P <0.001 for the comparison of OAC vs non OAC, and
 - 0.68 (95% CI, 0.50–0.90); P =0.04 for the comparison of NOACs vs VKAs.

Figure 1. Selection of population for analysis

Table 1. Adjusted hazard ratios (HRs) for clinical outcomes at 3 months

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Outcome</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAC vs NOAC</td>
<td>All-cause Mortality</td>
<td>0.54 (0.43–0.68)</td>
</tr>
<tr>
<td></td>
<td>Stroke</td>
<td>6.40 (5.46–8.80)</td>
</tr>
<tr>
<td></td>
<td>Major Bleeding</td>
<td>1.41 (1.08–1.84)</td>
</tr>
<tr>
<td>NOAC vs VKA</td>
<td>All-cause Mortality</td>
<td>0.48 (0.35–0.69)</td>
</tr>
<tr>
<td></td>
<td>Stroke</td>
<td>6.43 (5.35–7.91)</td>
</tr>
<tr>
<td></td>
<td>Major Bleeding</td>
<td>6.49 (5.27–12.75)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- We have previously described the higher rates of mortality over the first few months after the diagnosis of AF compared with rates of mortality over 2 years follow-up.
- In these analyses, we show that there are significant mortality differences in favour of OACs, even after adjustment for 31 baseline variables. These differences are manifest within 3 months from diagnosis (number needed to treat, NNT=76 [95% CI 97–197]).
- The benefit of NOACs (relative to VKAs) on mortality was also observed by 3 months (NNT=167 [95% CI 109–352]).
- These findings extend the evidence from randomised trials with data from a prospective multinational registry population with newly diagnosed AF.
- They also raise questions about the impact of anticoagulation, beyond stroke prevention.
- Additional investigations into impact of OAC and NOACs on other outcomes are warranted.

ACKNOWLEDGEMENTS

- Funding for this research was provided by Daiichi-Sankyo, Japan and Eli Lilly & Co., USA. This work was supported by Daiichi-Sankyo, Japan and Eli Lilly & Co., USA.
- The study population comprised 19,134 patients (10,234 [NOACs]; 8,900 [VKAs]) and 7,608 patients without OAC (of the latter, 63.3% received aspirin-platelet antiplatelets).
- We thank the physicians, nurses and patients involved in the GARFIELD-AF registry. Editorial assistance was provided by Rae Hobbs (Thrombosis Research Institute, London, UK).

REFERENCES

DECLARATION OF INTEREST

- The GARFIELD-AF registry is led by an independent research grant from Bayer AG (Berlin, Germany).